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Point charges and the molecular el&trostatic potential 

by G. G. HALL 
Division of Molecular Engineering, Kyoto University, 

Kyoto 606, Japan 

The topological features of the bare nuclei potential are described in detail. The 
significance of the impossibility of it having a minimum is discussed. The molecular 
electrostatic potential and its representation using point charges is then described. 
The need to have some charges off the nuclei to represent lone pairs and bent bonds 
is emphasized 

1. Introduction 
The concept of a point charge has a long history in the classical theory of electricity 

and magnetism. It is an obvious model for a very localized charge. It is most successful 
as a model of a charged conducting sphere since, according to Gauss’s theorem, the 
potential outside is exactly the same as that of a point charge at its centre. On the other 
hand, difficulties do arise. The point charge has an infinite self-energy and this gives an 
unwelcome singularity in the total field energy. The significance of the point charge is 
only partly as a model of a localized charge. It also gives a physical interpretation of the 
Green’s functioq and, in this role, provides many useful results. 

. Molecular quantum mechanics uses point charges freely and needs to refine them 
only very occasionally. In the molecular Hamiltonian both nuclei and electrons are 
point charges and in most applications are well behaved. An exception is the Fermi 
contact term which diverges in second-order perturbation theory unless the nucleus is 
given a finite size (Blinder 1984). 

This paper is concerned with point charges in a slightly different sense. Here they 
are used to represent the electron charge distribution rather than the electron itself. 
Unfortunately this raises the classical problem of isolating the divergent results from 
the useful ones. There are many approaches to the problem of deriving point charge 
models and some will be described and compared in later sections. 

The following section discusses the nuclear charges and their potential and uses 
differential topology to show a limitation on the form of the potential. The third section 
discusses the molecular electrostatic potential in general and its representation using 
point charges. In the fourth section some techniques of deriving point charge models 
are reviewed and in the final section the broader significance of these models is 
emphasized. Two appendices describe mathematical results used in the earlier sections. 

2. The bare nuclei potential 
The bare nuclear charges produce a potential which is significant for a molecule 

since, multiplied by the electron charge, it is the one-particle potential energy term in 
the Born-Oppenheimer Hamiltonian. It is interesting to investigate the topology of 
this bare-nuclei potential. The topology of such three-dimensional scalar fields has 
been discussed in relation to the electron density (Collard and Hall 1977, Bader et al. 
19.79 a, b). The same features are found here. In particular, the type and location of the 
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116 G. G.  Hall 

critical points, where the first derivatives are zero, are of major importance in 
characterizing the shape of the potential. 

A single point charge has a Coulomb potential 

q = Z / r ,  z>o 
which satisfies the Laplace equation everywhere except at the origin r=O. In other 
words, it satisfies the Poisson equation 

V2q = -4nZS(r) 

The form of this potential is simple. It has an infinite maximum at the position of the 
charge; it remains positive everywhere and it approaches the value 0 at large distances. 
Since its first derivatives are never all zero it has no critical points but has a maximum at 
the origin as if the origin were one. 

The potential for a diatomic molecule is obtained by adding two such potentials 
together. It will have infinite maxima at the two nuclei and will fall to zero at large 
distances. There will also be a critical point on the internuclear axis since the two 
repulsive fields will balance at one point on this line. At this point the potential will be a 
minimum relative to other points on the axis but it will be a maximum relative to points 
in the plane normal to this axis. This is a saddle point (or Col) of type (3, -1) similar to 
that in the electron density of a diatomic molecule. 

When a third nucleus is added the potential becomes more complicated. There are 
still maxima, one at each nucleus. Between each pair of nuclei the Col where the fields of 
the two cancel must be moved to the inside of the triangle formed by the nuclei in order 
to balance the three repulsions. In general there will be three of these Cols, one for each 
nuclear pair. Consider now the triangle formed by the Cols. The potential must 
decrease from each Col towards the inside of this triangle and so must have a minimum 
at some interior point. This critical point will be a minimum in this plane but a 
maximum in relation to points on the normal to the plane so it will be a saddle point (or 
col) of type (3,l) similar to the ring saddle point in the electron density. 

Before generalizing these results another argument must be included. At a critical 
point the shape of the surface is determined by the matrix of second derivatfves, the 
Hessian matrix. The principal curvatures of the surface are the eigenvalues of the 
Hessian. When the three curvatures are positive the point is a minimum and when all 
are negative it is a maximum. A Col has two negative and one positive curvatures while 
the col has one negative and two positives. Except at the nuclei, the potential satisfies 
the Laplace equation and hence the sum of the curvatures is zero. Thus there cannot be 
a minimum critical point and maxima occur only at the nuclei because there the sum is 
negative as can be seen from the Poisson equation. 

When there are four nuclei, not lying in a plane, the potential becomes very 
interesting. Consider first three charges. As above, there will be maxima at the nuclei, 
three Cols inside the triangle and a ring col inside these. As the fourth nucleus is added it 
will add a repulsion at each of these critical points and the Cols will move towards it to 
counter this repulsion, The ring col will also move to the inside of the tetrahedron 
formed by the nuclei. Each of the four faces of this tetrahedron may have a similar set of 
critical points. For the electron density it is argued that the four ring cols define a region 
within which the density decreases to a minimum. There cannot be a minimum for the 
potential so the critical points must be accounted for in some other way. One possibility 
is that two critical points may coincide to give a catastrophe point. Thus a minimum 
coinciding with a col has a zero second derivative in one direction and the rank of the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Point charges and the molecular electrostatic potential 117 

Hessian is reduced to two. Coincidences between other critical points are also possible. 
Whatever coincidence occurs in a particular example it is clear that the potential inside 
the nuclear tetrahedron must be very flat. This is the equivalent for point charges of 
Gauss’s theorem, that the potential inside a conductor is a constant. 

The number of critical points of each type is governed by the Poincarb-Hopf 
relation. If there are M maxima, m minima, C Cols and c cols then 

M-C+c-m=l  

but, since m = 0, the bare potential has 

M-C+c=1  

Thus for one nucleus M = 1, C = c = 0 and for two M = 2, C = 1, c = 0. For three nuclei 
M = 3,  C = 3 so c = 1. For four M = 4, C < 6 so c < 3; but, c would be expected to be 4 so 
one has coincided with a minimum to give a catastrophe point which does not 
contribute to this equality. This relation summarizes all the previous argument. 

This analysis has one general consequence. It has been suggested by Parr and Berk 
(1981) that the electroh density might be a function of the bare nuclear potential. For 
this to be true they must have critical points in the same positions. But the electron 
density can and does have a minimum inside a cage of nuclei and the bare nuclear 
potential does not. Thus there is a qualitative difference between them. Such a 
difference has been shown for cubane by Politzer and Zilles (1984) and this argument 
shows that the result is general. 

3. The molecular electrostatic potential 
The electrostatic potential due to the electrons is determined from the integral 

It has some features in common with the nuclear potential but modified by the change 
of sign. Thus, it cannot possess a maximum since the sum of the curvatures is positive 
everywhere. It can have minima and these occur at the nuclei since the electron density 
is a maximum there. Between two nuclei there will be a col and inside a ring a Col. The 
role of these two critical points is reversed. 

The Molecular Electrostatic Potential (MEP) is the sum of the nuclear and 
electronic potentials. Because the nuclear term is so large near the nuclei it dominates 
the MEP there. Thus, the nuclei display maxima and between them the nuclear Col 
usually wins over the smaller electronic col. In the outer regions the electronic term 
becomes of greater importance. Many maps of the MEP of molecules have been 
published (see Bonaccorsi et al. (1984) and references within). They show that the sum 
can produce new critical points such as minima in lone pairs and also in some bent 
bonds. A theorem which can be used to discuss these is outlined in Appendix A. 

4. Techniques for deriving point charges 
An effective method of deducing a point charge model from a modern calculated 

wavefunction is to shrink its Gaussians into delta functions (Hall 1973). In effect this 
puts a charge on each nucleus equal to its Mulliken population (1935) but the overlap 
population is divided into many small charges along the internuclear axis. The angle 
dependence of the atomic density will give rise to extra point dipoles and quadrupoles. 
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118 G. G. Hall 

This shrinking does not change the total molecular moments (for a proof see Appendix 
B). The practical difficulty of this model is the rather large number of small charges it 
requires, one for each pair of Gaussians on different centres. 

A practical method of deducing a point charge model is to use two stages in the 
calculation (Hall and Smith 1984). In the first stage the molecular electron density, 
which is a quadratic form in the atomic orbitals and so in the basic Gaussians, is 
approximated by a linear sum of Gaussians. This can be fitted by the optimization of an 
appropriate functional. It has been argued that the most suitable choice is the energy of 
the error in the electric field (Hall 1983). If E is the true field and E* the approximate one 
then the integral 

measures the error. It is minimized with respect to the positions and sizes of the 
Gaussians until the error is acceptably small. The result is a compact form for the 
electron density which may be useful in other connections. The second stage of the 
calculation shrinks these Gaussians to delta functions. 

In locating the point charges there is one important principle. The maxima and 
minima of the MEP should be reproduced. Since a minimum in the potential can be 
produced only by placing a negative charge there, the minima in lone pairs and bent 
bonds will necessitate point charges located there. Failure to do so will result in the 
divergent multipole expansions of the type studied by Stone (1981). 

5. The wider significance of point charge models 
The MEP is the first-order term in a perturbation calculation of the interaction 

energy of two molecules. The second-order terms are also important in a quantitative 
sense. Yet this first term has a very strong angular dependence, especially at long and 
medium distances, which is not found in other terms. Thus, for an understanding of the 
effect of geometry on a chemical reaction, or on the structure of molecular clusters, this 
first term is often the vital one. The position of the point charges is an easily visualized 
means of grasping the angular aspects of the forces. The use of the MEP in molecular 
recognition has been reviewed by Hadzi et al. (1984). 

The MEP has another important function. The electrical force is the only one which 
can be reversed. If, when a reaction takes place, the charges are greatly changed then the 
attraction that brought the molecules together can be turned into a repulsion 
preventing them form reacting backwards. No other force can be reversed in this way. 
This can be an important aspect of certain biological reactions and argues that point 
charge models should be studied as a function of the reaction coordinate. 
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Point charges and the molecular electrostatic potential 119 

Appendix A 
If p is a charge density and cp the related potential and if a sphere is taken with radius 

R and centre c then the average of the potential over the surface of the sphere is given by 

g=’s p(s)ds+ j p(s)/lc-slds 

This is proved by expanding the potential around the point c and noting that every 
term vanishes under spherical averaging except the first. 

This can be applied to any neutral molecule, with some internal point for c and a 
large R, to show that the average potential tends to its asymptotic value of zero from 
positive values. A molecule with a large dipole may, of course, have some directions 
along which it tends to zero through negative values. 

It also applies to an electronegative atom in a molecule, with c at its nucleus, and 
shows that there is a radius such that the total enclosed charge is zero and the first term 
vanishes while the second is rather small. The average may then go negative outside this 
sphere. If the potential is negative anywhere then, by continuity of the potential, it must 
have a minimum value and the potential has a minimum critical point. 

inside outside 

Appendix B 
If p is an electron density which is a linear sum of normalized Gaussians Gi(r - pi) at 

points pi 

p = 1 qiGi(r - pi), where Gi(r - pi) = ( ~ l ~ / a ) ~ / ’  exp [ - ai(r - pi)’], 
I 

then many molecular properties are defined as integrals over the density with an 
analytic function M(x,y,z). These can be evaluated by two changes of variable, of which 
the first is 

A? = p( r )M( r )  dr = qi Gi(r - pi)M(r) dr = 1 qi Gi(r)M(r + pi) d r J i J i J 
Now as M is analytic it satisfies the Taylor theorem viz. 

M(r+pi)=exp I-- M(pi) ( i i )  

so the integral becomes 

R = 1 qi sGi (r )  exp (r .”) dr M(pi). 
i aPi 

The second change of variable is 

and so M has the value 

since the Gaussian remains normalized. This is another version of the proof given by 
Martin and Hall (1981). 
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120 Point charges and the molecular electrostatic potential 

This is applied to the molecular multipole moments by noting that, for these, each 
M satisfies the Laplace equation, V 2 M  = 0, so that the expression reduces to 

which is exactly the point charge value. 
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